Reflected generalized concentration addition and Bayesian hierarchical models to improve chemical mixture prediction
Image credit:Abstract
Environmental toxicants overwhelmingly occur together as mixtures. The variety of possible chemical interactions makes it difficult to predict the danger of the mixture. In this work, we propose the novel Reflected Generalized Concentration Addition (RGCA), a piece-wise, geometric technique for sigmoidal dose-responsed inverse functions that extends the use of generalized concentration addition (GCA) for 3+ parameter models.
Type
Publication
Plos one